http://blog.sciencenet.cn/blog-517721-852551.html
学习笔记:深度学习是机器学习的突破
2006-2007年,加拿大多伦多大学教授、领域的泰斗Geoffrey Hinton和他的学生RuslanSalakhutdinov在《科学》以及在Neural computation 和 NIPS上发表了4篇文章,这些文章有两个主要观点:
1)多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;
2)深度神经网络在训练上的难度,可以通过“逐层初始化”(layer-wise pre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。
在其后2012年GOOGLE BRAIN应用深度学习实现了对’猫‘特征的无监督学习后,正式开启了深度学习在学术界和工业界的浪潮。
深度学习是研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。深度学习是无监督学习的一种。
深度的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的特征表示。当前多数分类、回归等学习方法为浅层结构算法,其局限性在于有限样本和计算单元情况下对复杂函数的表示能力有限,针对复杂分类问题其泛化能力受到一定制约。深度学习可通过学习一种深层非线性网络结构,实现复杂函数逼近,表征输入数据表示,并展现了强大的从少数样本集中学习数据集本质特征的能力。(多层的好处是可以用较少的参数表示复杂的函数,比如下图中的右图,即将复杂函数分解成多层函数递进表示)
深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度”是手段,“特征学习”是目的。区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来特征,更能够刻画数据的丰富内在信息。
如下是深度学习的非常好的一批教程网站
。
。
以上文字和网站链接资料摘编自如下网址:
http://www.cnblogs.com/tornadomeet/archive/2012/05/24/2515980.html
另外给出2006年的3篇关于深度学习的突破性论文:
Hinton, G. E., Osindero, S. and Teh, Y.,A fast learning algorithm for deep belief nets. Neural Computation 18:1527-1554, 2006Yoshua Bengio, Pascal Lamblin, Dan Popovici and Hugo Larochelle,Greedy LayerWise Training of Deep Networks, in J. Platt et al. (Eds), Advances in Neural Information Processing Systems 19 (NIPS 2006), pp. 153-160, MIT Press, 2007Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra and Yann LeCun Efficient Learning of Sparse Representations with an Energy-Based Model, in J. Platt et al. (Eds), Advances in Neural Information Processing Systems (NIPS 2006), MIT Press, 2007